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STABILITY IN THE SHEAR LAYER OF A COMPRESSIBLE GAS 

A. N. Kudryavtsev and A. S. Solov'ev UDC 532.526 

In the mixing of two parallel streams of a viscous gas, moving at different velocities, 
near the boundary of separation a flow is formed that is referred to as an ordinary free 
shear layer. Such flows in actual practice are encountered in the boundary layer of a jet 
discharging into a submerged space, in the wake trailing a nonsymmetrically streamlined 
body, etc. The free shear flows are extremely unstable to small perturbations, i.e., the 
shear layer of an incompressible gas, for example, is unstable for all Reynolds numbers 
Re [i]. The stability of the compressible shear layer in the case of finite Re has, appa- 
rently, not been studied earlier. Without provision for viscosity, this problem is solved 
in [2-4], with a number of additional simplifications having been introduced: the tempera- 
ture throughout the entire flow was assumed to be constant and the dynamic profile was given 

by the function U(y) = tanh y. 

In the present study in investigating the stability of the compressible shear layer 
we assume the gas to be viscous and capable of conducting heat, with the velocity and tem- 
perature profiles calculated from corresponding boundary-layer equations [5]. Approxima- 
tions of an incompressible or inviscid gas are thereby attained in the form of limit cases 
in which the Mach number M + 0 or Re + ~. The calculations were performed numerically by 
the orthogonalization method [6]. It is demonstrated that when M ~ i the stability of the 
flow is determined by wave perturbations exhibiting a phase velocity c r = 0 and a zero 
critical Reynolds number Re,. With an increase in M the region of unstable wave numbers nar- 
rows. When M z i, as in the case of the inviscid problem [3], stability is determined by 
traveling waves with c r ~ 0 (the second perturbation mode). It has been observed that for 
the second mode Re, is different from zero and diminishes as M increases. We have construc- 
ted the neutral stability curves, the eigenfunctions, and we have studied the relationship 
between the characteristics of stability and M for the case in which 0 ~ M ~ 2. 

i. Let us examine the plane flow in the shear layer of a compressible viscous heat- 
conducting gas. We will assume the gas to be ideal, with constant heat capacities c V and 
Cp = ~c V, viscosity ~, and thermal conductivity k directly proportional to temperature, 
so that the Prandtl number Pr = pcp/k is constant and that the second viscosity is equal 
to zero. The Navier-Stokes equations, written in dimensionless form, in this case have 

the form 

Oui 8ui "~ Op t O(~ij 
+ - o ,  ,o w+ j xj) + Ro axj 

p ~ -~ ~ Ox i ] - I - ( ? - - I )  P O ~ - -  HePr Ox) ~t -~ Re 

( 0 ) = 8 ,  p=pO/?M ~, 
2 t (Oui Ouj~ = - = y \ + / ,  ], k = t ,  2 ,  

M = u , / V ? R T , ,  Re = p,U,8/lx,, 5 = (nI~X/p,U,) ~/2. 

a{~e{j, ( i. i) 

Here u I ~ u and u 2 ~ v are the longitudinal and transverse components of velocity in the 
direction of the x I ~ x and x 2 ~ y axes, respectively; p, p, and 8 are the density, pres- 
sure, and temperature of the gas; R is the gas constant. The region in which the indepen- 
dent variables x and y change represents the entire plane -~ < x < ~, -~ < y < ~. We have 
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taken the thickness of the boundary layer ~ between the flows as our scale of length and 
X represents the dimensional longitudinal coordinate. Velocity, density, and temperature 
have been referred to their values in the uniform unperturbed flow as y + ~ [identified 
in (i.i) with asterisks], so that U[y~ = i, 81y_~ = i. The constant values for velocity 
and temperature in the other flow have been denoted as U[y+_~ = m, 0[y+_~ = ~. 

To study the stability of the shear layer we will, as is usual practice, seek a solution 
in the form of a superposition of the main laminar flow taken for a fixed value of the coordi- 
nate x = x 0 (the quasiparallel approximation) and the perturbations periodic with respect 
to x, i.e., traveling low-amplitude waves: 

~,~ = ~o(Xo, zl) + ~(x, y, t), tc = U(xo, y) + "5(x, ~/, t), 

v = 7 ( x ,  ~,, t), p = n(~o, ~) + ~(x, y, t), o = T(xo, ,j) + "~(x, y, t); 

{~o, u, v, p, o } = {p(y), u(y), v @ ,  p(y), o(,j)}e~'(:r 

c - -  c~ @ ic~ 

(1.2) 

( 1 . 3 )  

(~ is the wave number of the periodic perturbation, with the period 2~/~; c r is the phase 
velocity of the wave). Calculation of the main-flow parameters is accomplished on the basis 
of boundary-layer theory [5], the pressure H = I/yM 2 is constant, and it follows from (I.i) 
that P0 = I/T (the calculation of the main flow and the relationship of x 0 to Re can be 
found in the Appendix). 

Having substituted (1.2) and (1.3) into (i.i) and leaving only the terms of the first 
order of smallness with respect to perturbation amplitude in the equations, we arrive at 
the following system of ordinary differential equations: 

D p  + ~q l dT 
T T 2 dy V = O, 

Du + --~ v + ic~Tp = ~ ~oAU + - - 5 - -  + -~ -  V~- + i~v  + ~ / - ~ - y  0 , 

= R---e- .~~ -~ W d"--y- -}- ~ dy \ ~ - -  iczu_ -4- io~ W 0_, 

dT u yT ( d2T 2 dT dO ~ 
DO+-g~- - - ? (y - - l )  T q =  R - R - ~ T ~ o A O + - ~ s O +  @ @ ] +  

p = (O/T @ Tp) / yM 2, ,u o = ,u(T), ~1 = i~u -~ dv/dg,  

D = i a ( U - - c ) ,  A =d2/dy  2 ~ ( z  ~. 

(1.4) 

Equations (1.4), enhanced by the requirement of the limitations imposed on the perturba- 
tions at infinity 

IPl,  lu{, lvl, iPl, l O l <  ~176 as lYl ~ ~  (i.5) 

d2P (__ 
dy ~ 

whose asymptotic solution as 

make up the eigenvalue problem for c. The flow is stable if c i < 0, and it is unstable 
when c i > 0. With c i = 0 the flow is neutrally stable. 

Let us note that at the inviscid limit as Re ~ ~ system (1.4) reduces to a single equa- 
tion for the pressure amplitude [7] 

2 dU t d T ) d p  [ (U--c)2  i ] p = 0 ,  ( i  6) 
U - - c  dy T dy ~ -~- 0~ "M~ T 

[y[ + ~ is written as 

p ~ exp ( ~ a V  i -- M2(U -- c)~/T y). 

For example ,  l e t  y ~ -~ .  
s a t i s f i e d ,  and namely:  

(1.7) 

Then from (1.7) we see that if the following condition has been 

e~ - 0, lm - -  cTI > V ~ ] M ,  ( 1 . S )  

t h e  p e r t u r b a t i o n  o s c i l l a t e s ,  w i t h o u t  a t t e n u a t i o n  as  y + - ~ .  A n a l o g o u s l y ,  when y + +~ t h e  
s o l u t i o n  o f  t h e  i n v i s c i d  e q u a t i o n  i s  no t  a t t e n u a t e d ,  p r o v i d e d  t h a t  

950 



c~ = 0, [1 - -  c~l > t /M.  ( 1 . 9 )  

In dimensionless variables I/M is the speed of sound in the uniform flow as y + ~, and it 
is v~TM as y ~ -~, so that conditions (1.8) or (1.9) therefore characterize the perturba- 
tions propagated at supersonic speeds relative to the "upper" (or "lower") flow of gas. 
As is demonstrated in A.3, such "supersonic" perturbations for M ~ 1 play a decisive role 
in the complete stability problem (1.4), (1.5). 

2. For the numerical solution of Eqs. (1.4) it is convenient to rewrite these in the 
form of a system of six first-order equations [8] and to take the Dorodnitsyn variables 
as the new independent variable: 

df (~) /dT  = G(~)f, f = (u, u ' ,  v, p, 0, 0 ') .  ( 2 . 1 )  

The prime here and below denotes derivatives with respect to ~, the relationship between 
the variables ~ and y, and the dependence of the main-flow velocity and temperature U, T 
as functions of ~ are given by formulas (A.6)-(A.9). In Eq. (2.1) G is a matrix with 
dimensions of 6 • 6, whose elements differ from zero are presented as follows: 

GI2 : 1, G,21 : ReD H ~2TZ, G23 : R e U ' / T  - -  4 i ~ T ' / 3 ,  ( 2 . 2 )  

G ~  = i a T ( R e  H ?M2TD/3) ,  G2~ = - - i ~ T D / 3  - -  ( U ' / T ) ' ,  

G26 = - - U ' / T ,  G31 = - - i ~ T ,  G3~ = T ' / T ,  G34 : - - ? M 2 T D ,  

G3~ = D,  Ga~ = - - t O i ~ T ' / 3 Q ,  G t2 = - - i ~ T / Q ,  G4~ = 

= ( 4 T " / 3 T  - -  ReD - -  ~iT~)/Q,  G~s = - - 4 ? M ~ ( i T ' D  H i ~ U ' T ) / 3 Q ,  

G~5 = ( 4 D T ' / T  H 7iaU')13Q,  G ~  = 4D/3Q,  Q = He H 4?M~TD/3 ,  

G ~  = 1, G~ 2 = - - 2 ( ?  - -  I )MzPrU ',  G~  = R e P r T ' / T  - -  2i~(?  - -  

- - t ) M ~ P r U ' T ,  G~a = - - ( ?  - -  I )M~RePrTD,  

G ~  = R e P r D  H ~ ~T~ - -  ( T ' / T ) '  - -  (? - -  1)M~PrU'~]T, 

G~  : - -  T ' / T .  

The procedure of the numerical solution involves determination of the fundamental system 
of solutions (2.1) in the external region I~I + ~, the extension of the eigenvectors by 
numerical integration to the "inside" of the shear layer and the subsequent combining of 
the "upper" and "lower" general solutions at the point ~ = 0. 

As I~I § ~ the coefficients from (2.2) are constant and a solution proportional to el~ 
may be sought. From (2.1) we then find the following system of algebraic equations: 

(ReD + ~ iT i )u  + / s T ( R e  + ?M~TD/3)p  - -  i~DTO/3  = Liu, ( 2 . 3  

- - i ~ T u  - -  ?M~TDp + DO = ~v, 

- - ' i a T % u  - -  (ReD + ~ iT i )v  + 4D%0/3 = (Re + 4 ? M i T D / 3 ) ~ P ,  

- - ( ?  - -  1 )MiBePrTDp + (RePrD + aiT~)0 : Ei0. 

We will show that the roots ~ of the characteristic equation for system (2.3) (i.e., the 
eigenvalues of the matrix GI~I~) can be found analytically. Multiplying the first equa- 
tion by I/T, combining it with the second, multiplied by -is, and eliminating p and 0 with 
the aid of the third of the equations in (2.3), we obtain an equation for the rotation ~. 
It has the same form as in an incompressible gas: 

(ReD H a2T2)~ = ~ ,  ~ = ( t / T ) ~ u - - i a v .  ( 2 . 4 )  

From this we immediately determine one of the values of XI 2 Then, having eliminated u and 
v from the third and fourth equations in (2.3), we come to a uniform system of two related 
equations for p and 0. Equating the determinant to zero, it is easy to prove that as a 
result we will have an equation that is quadratic relative to ~2, from which we find the 
remaining roots X2 2 or ~3 2 Thus, 

~2 = ~2T2 _~ Ai ' i = ~[, 2, 3, 

1 
A 1 = R E D ,  A2,3= ~ - P r A  1 4 

i + y  q~, 
X 

(2.5 
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I Pr t + q  -3" + -Pr-r [' Re 

The corresponding eigenvectors wl of the matrix GJ~[+~ are obtained after substitution of 
(2.5) into (2.1) and we will write their componenns wiJ as follows: 

iaT 

6 L:v~, i 1, 2, 3, 

= = : = o ,  

~ 2~l 1,5 l D V ( R e P r D  + os 2 -  ,~:] "h, 

w ~  RePrD- -~ -~2  .2 

(? - -  t) M ~ Re Pr TD 

Re D + tzzT ~ -- %~ 
k = 2 ,  3. 

(Re/-  yMUTD/3) (]Re Pr D ~, a2T "~ - -  ~ )  ] ' 

(?- -  i) M 2 Re PrD J 

( 2 . 6 )  

In the limit case of large Re formulas (2.5) take on a simpler appearance: 

~2 = 82T2 q_ Re D, ~2 ~ = cz~T2 + lie PrD, %~ = o~~ 2. + D2M2T.  (2.7) 

In the external region the particular solutions of the form wie ~ exhibit the clear physical 
sense of waves of rotation, temperature (or entropy), and of pressure, i.e., three types 
of elementary excitations in a compressible heat-conducting gas [9]. Let us note that the 
solution for ~3 (the pressure wave) as Re § ~ changes into the solution of the inviscid 
problem [compare (1.7) with (2.7)]. The overall solution of (2.1) as ~ + ~, satisfying 
(1.5), is written as a linear combination of the three particular solutions: 

3 
~i~p fl~-,~o = ~ Ciw~e , ( 2 . 8 )  

i = l  

where for h i we should take the value of the quadratic root from %i 2, for which Real(h i ) < 
0 [in (2.5) and (2.6) in this case we have U = i, T = i]. The case in which for one of 
the h i Real (h i) = 0 corresponds to the presence of a continuous spectrum in problem (1.4), 
(1.5), which is not dealt with in this study, As ~ +-~ we must assume in (2.5) and (2.6) 
that U = m, T = K and we have to choose the sign of the quadratic roots so that Real (h i) > 
0. We will denote the eigenvalues and eigenvectors of the matrix G[~_~ in terms of 

L4,~5,~ 6, W~, Wb, W6. 

In the numerical solution system (2.1) is integrated with the initial data wl, w 2, w 3 
from ~ = ~ to ~ = 0, and then with w~,w 5,w 6 from ~ = -~, also to ~ = 0. The vectors ob- 
tained after integration are denoted zl ..... Z6. With ~ = 0 the eigenfunction of the problem 
must be a linear combination of both zl, zz, z~, and z4, zb, z6: 

C t z t + C : ~  + C3z3 = C4z~ + C~z5 § C6z6. 

The condition for the existence of a nontrivial solution for (2.9) 
determinant F = IziJ[: 

(2.9) 

is the vanishing of the 

(2.10) 

The fourth order-of-accuracy Runge-Kutta scheme was used in the integration of (2.1). To 
avoid the rapid accumulation of errors associated with the presence of the small parameter 
in (1.4) for the higher derivatives, we used the orthogonalization method from [6]. Equa- 
tion (2.10) was solved with the Newton iteration method in the determination of c. 

It should be underscored that in the actual conduct of the calculations the region 
of convergence for the iteration method may be extremely narrow, since in the case of large 
Re the solution for (2.1) and (2.8) is close to that for the inviscid problem (1.6), (1.7) 
and the vectors z3, z6 are virtually linearly dependent. Therefore, in the present study 
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we carried out the calculations in the following manner. We assumed the constant C 6 to 
be equal to unity, and one of the equations (usually the equation for p) was separated from 
system (2.9). The system of five equations, whose matrix no longer contains any rows or 
columns that are nearly linear functions, was then solved for C I, .... C 5. The found values 
for the constants were substituted into the remaining equation and instead of condition 
(2.10) it became necessary to satisfy this equation. Boundary conditions of the form of 
(2.8) were imposed with sufficiently large I~I = L in the main portion of the calculations 
with L = 5.5. The number of points on the interval (-L, L) was usually N = 129, while in 
the case of large Re the calculations were sometimes carried out with N = 257. As a rule, 
the iteration process was brought to a conclusion when the change in the unknown quantity 
in the next iteration step proved to be smaller than 10 -6 . 

3. The numerical calculations in this study have been carried out for the case in 
which the mixing flows have identical temperature (< = i) and move with equal oppositely 
directed velocities (m = -i). Setting m = -i does not reduce the generality of our examina- 
tion, since it simply corresponds to a transition to a reckoning system moving at a velo- 
city equal to the half-sum of the flow velocities. In all of the calculations Pr = 0.72, 

= 1.4. The results of the stability calculations can be seen in Figs. 1-6. 

Figure i, in the coordinates ~, M, shows the neutral stability curves (c i = 0) for 
Re = 103 , i.e., virtually under the conditions of the inviscid problem. Neutral curves 
I and 2 correspond to the two different branches of the dispersion equation (2.10), i.e., 
to the various perturbation "modes." However, for purposes of comparison neutral curve 
3 with the first mode ~2 + M 2 = i is given here, and it was derived analytically in [2]. 
We can see that when M ~ 1 the selection in the inviscid problem of simpler distributions 
of velocity and temperature for the main flow having a form such as U(y) = tanh y, T(y) = 
1 qualitatively does not change the behavior of the neutral curve. In the absence of compres- 
sibility (M = 0) the perturbations are unstable when ~ < ~, = 0.915 (~ < 1 in [2]). On 
the whole, compressibility with M ~ 0 exerts a stabilizing effect, i.e., the region of un- 
stable wave nt~bers (bounded by the axis ~ = 0 and the neutral curves) becomes constricted 
as M increases, and with M = i total stabilization of the first mode sets in. A character- 
istic property of the first mode, associated with the symmetry of the main flow when m = 
-i, ~ = 1 (see Appendix), is the fact that the phase velocity is equal to zero (c r = 0) 
for all ~, Re, M, and ci, i.e., the first mode is a standing wave. Moreover, if c i also 
vanishes, then in the shear layer we find a "replacement of stability," i.e., a new steady 
state sets in. 

953 



500 

~e~ 

! 

1 \ 
0 

~8 M.1;o M 1,J -5 o y g 

Fig. 4 Fig. 5 

-o,5 

-o,9 
- 5  

~5f 4 ~ I 

e~ j 
I 
I 
I 
I 

0 .y 5 

Fig. 6 

For the second mode (curve 2) the calculations show that c r ; 0 also changes in accor- 
dance with condition (1.8) in the interval 1 - I/M < c r < i, so that a wave of this type 
is propagated at subsonic speed relative to the "upper" flow and with supersonic speed rela- 
tive to the "lower" flow. At first glance, the existence of such perturbations contradicts 
the properties of symmetry for the main flow. The paradox is resolved, however, by the 
circumstances that if c r + ic i, i.e., the eigenvalue of problem (1.4), (1.5) with the eigen- 
functions p(y), u(y), v(y),p(y),O(y), then given the same ~, M, Re, and -c r + ici, i.e., the eigen- 
value with the eigenfunctions p*(--y),--u*(--y),--v*(--y),p*(--y),O*(--y) (the asterisk indicates 
complex-conjugate quantities). Indeed, such a formulation changes Eq. (1.4) into one that 
is complex-conjugate. This means that the second mode is actually two modes exhibiting 
coincident neutral curves. The minimum Mach number at which neutral oscillations arise 
with c r ~ 0, M, = 0.906 (see Fig. i), so that in the comparatively narrow range M, < M < 1 
there exist three unstable oscillating modes simultaneously. One of these is a standing 
wave, and the two other modes, exhibiting identical growth coefficients for ~c i, travel 
in opposite directions at different velocities. In the following, when dealing with the 
second mode, we will have in mind that wave which propagates in the positive direction of 
the x axis. The results from the calculation for the second traveling wave are analogous 
but have the obvious changes. 

Figure 2 shows the neutral curves for the first mode in the plane ~, Re for various 
M: curves 1-3) M = 0 (the incompressible shear layer); 0.5; 0.95. To make the picture 
more complete, with M = 0.95 here we have also a plot of the second-mode neutral curve (line 
4). We see that with an increase in M (curves 2 and 3) the Re, for the first mode remains 
equal to zero, i.e., the shear layer is unstable when M < 1 for any Re. The effect of com- 
pressibility on the first mode thus reduces to a reduction of the region of unstable wave 
numbers. 

Figure 3 shows the results from the calculation of the stability in the second mode. 
Figure 3a shows neutral curves 1-3 for M = 0.95, 1.2, 2.0. Unlike the first mode Re, 
0, it rapidly diminishes with an increase in M. The stabilizing effect of viscosity becomes 
noticeable to a greater degree when M = 0.95 (Re, for curve 1 exceeds Re, of curves 2 and 3 
by more than an order of magnitude). Figure 3b shows the c r of the neutral perturbations 
as a function of Re for the same three values of M. The quantity c r changes quite insig- 
nificantly when M = 1.2 or M = 2.0 (see curves 2 and 3 in Fig. 3b, for the first of these 
c r at the upper and lower branches of the neutral curve virtually coincide). 

Figure 4 shows Re, as a function of M. Comparison of this figure with Figs. 1 and 3a 
makes it possible to describe the qualitative behavior of the neutral second-mode curve 
with a change in M as follows. With M e 1 the asymptote of its lower branch is represented 
by the axis ~ = 0, Re, - i. When M + M,, Re, rapidly increases, the neutral curve shifts 
into the region of large Re, and the lower asymptote approaches the upper (see Fig. i). 
In this range of M the effect of viscosity on the oscillations of the second mode is at 
its maximum. If we also take into consideration the presence of the first mode, we can 
draw the conclusion that the shear layer is most stable when M = i. With M = i the first 
mode is completely stabilized and for the oscillations of the second mode we have Re, = 32.8. 
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Figure 5 shows the behavior of the eigenfunctions for pressure perturbations p(y) [these 
have been normalized so that p(0) = i] of the neutral oscillations of the first (M = 0.5) 
and second (M = 1.2) modes for two values of Re. Curves i and 2 pertain to the first mode 
and correspond to Re = 20, ~ = 0.620 and Re = i00, ~ = 0.697. For the second mode Re = 
20, ~ = 0.028, c r = 0.330 (curve 3), Re = i00, ~ = 0.230, c r = 0.351 (curve 4). The solid 
lines represent the real part of the eigenfunctions, while the dashed lines represent the 
imaginary parts [the imaginary part of p(y) in case 2 is very small and is not shown in 
Fig. 5]. We can see that the behavior of the eigenfunctions for the two modes differ com- 
pletely, in particular, the eigenfunctions of the second mode virtually do not diminish 
as y +-~, i.e., the perturbations radiate into the external flow. It is also clearly evi- 
dent that if curves 1 and 2, corresponding to various Re, differ weakly from one another, 
then 3 and 4 will differ significantly. The pressure perturbation for the case in which 
Re = 20 (curve 3) undergoes virtually no change across the shear layer. This is associated 
with the fact that this is a long-wave perturbation (~ = 0.028), with a wavelength of 2~/~, 
significantly exceeding the thickness of the shear layer. The influence of the viscosity 
on the second mode thus is considerably stronger than its effect on the first mode. 

Figure 6 shows the Reynolds stress waves m(y) averaged over the length 

T = --Po Real u Real v = --(l/4)(uv* + u*v)/T. ( 3 . 1 )  

They characterize the exchange of energy between the perturbations and the main flow. Curves 
1-3 correspond to ~ = 0.6, 0.697, 0.8 when M = 0.5 (the first mode); curves 4-6 correspond 
to ~ = 0.15, 0.230, 0.3 when M = 1.2 (the second mode), the solid lines show �9 for the neu- 
tral oscillations while the dashed lines represent the attenuating oscillations; the dashed- 
dotted lines represent the increasing oscillations (Re = i00). The eigenvalues of c for 
curves 1-6 are as follows: c = 0.0965i; 0; -0.i07i; 0.310+0.0443i; 0.330; 0.342 - 0.277i. 
Curve 2 has been plotted on another scale (m • I0). Let us note that in the case of in- 
viscid neutral perturbations of the first mode the Reynolds stresses are identically equal 
to zero, while for the second mode in this case �9 experiences a discontinuity at the point 
y = 0, remaining constant on both sides of that point [3]. 

APPENDIX 

The profiles of velocity and temperature for the steady-state main flow in the shear 
layer, satisfying the equations of the boundary layer with the boundary conditions 

Uly- .~  = 1, Tly~o= = t ,  Uly-~-~  = m ,  Tly-~-|  = • 

have the following form [5]: 

U6p)  = t + ( l / 2 ) ( m  - -  1 ) ( t  - -  e r f~p) ;  

T(r i + ~ ( ~ _  t)[1-- err ( ,V~)I 

+ s) t7 L- -z - j  } d:, 

where ~ is determined by the formula 

(A.I) 

(A.2) 

(A.3) 

y t ~ l"(z) dz. 
o 

(A.4) 

Here the variables x and y have been referred to the thickness 6 of the shear layer [see 
(1.1)]. The Reynolds number, constructed on the basis of 5, is associated in this case 
with the coordinate x by the formula 

R e  = ~ x .  ( A . 5 )  

The main flow in the stability problem is treated in the fixed cross section x = x0, 
where according to (A.5), x 0 = Re/~. Then in the place of (A.4) we will write 

r 

2 ~T(z) dz. 
0 
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It is more convenient to use the variable ~ = 2~/~v~-~, so that 

(p 

y= STdz. 
0 

(A.6) 

Having substituted U from (A.2) into (A.3), with consideration of (A.6), we have the final 
formulas for U and T: 

U(@) = i ~- (I/2)(m -- i)[i -- err (~/2) 1; (A. 7)  

I (• __ ])[i -- erf ( V~-~r cp/2)] T(m)= i +T 

2 ~ (A.8) Pr (7-- t) M 2 (m--  {) + 
J (z) dz; 

(D(z) ---- exp (--.~Prz2/4)erf ( ~a(2 -- Pr)z/2). (A. 9) 

If we now assume that m = -1, K = I, then U will be an antisymmetric, and T will be a symmet- 
ric, functions of the variable ~ and, consequently, according to (A.6), also of the vari- 
able y. 
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